Small almost disjoint families with applications

Grzegorz Plebanek

University of Wrocław

Winter School in Abstract Analysis, Hejnice (2019)

joint work with

Antonio Avilés and Witold Marciszewski

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ●

For $\mathscr{A} \subseteq \mathscr{P}(\omega)$ and $S \subseteq \omega$ write $\mathscr{A} \leq S$ to denote that $A \subseteq^* S$ for every $A \in \mathscr{A}$.

For $\mathscr{A} \subseteq \mathscr{P}(\omega)$ and $S \subseteq \omega$ write $\mathscr{A} \leq S$ to denote that $A \subseteq^* S$ for every $A \in \mathscr{A}$.

Separation

Families $\mathscr{A}_1, \ldots, \mathscr{A}_n \subseteq \mathscr{P}(\omega)$ are separated if there are S_i such that $\mathscr{A}_i \leq S_i$ for every $i \leq n$ and $\bigcap_{i=1}^n S_i = \emptyset$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

For $\mathscr{A} \subseteq \mathscr{P}(\omega)$ and $S \subseteq \omega$ write $\mathscr{A} \leq S$ to denote that $A \subseteq^* S$ for every $A \in \mathscr{A}$.

Separation

Families $\mathscr{A}_1, \ldots, \mathscr{A}_n \subseteq \mathscr{P}(\omega)$ are separated if there are S_i such that $\mathscr{A}_i \leq S_i$ for every $i \leq n$ and $\bigcap_{i=1}^n S_i = \emptyset$.

Cardinal numbers a_n

For $n \ge 2$ we write a_n for the minimal size of an almost disjoint family \mathscr{A} that can be divided into disjoint parts $\mathscr{A}_1, \ldots, \mathscr{A}_n$ that are not separated.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Moreover, we write $\mathfrak{a}_{\omega} = \sup_{n} \mathfrak{a}_{n}$

For $\mathscr{A} \subseteq \mathscr{P}(\omega)$ and $S \subseteq \omega$ write $\mathscr{A} \leq S$ to denote that $A \subseteq^* S$ for every $A \in \mathscr{A}$.

Separation

Families $\mathscr{A}_1, \ldots, \mathscr{A}_n \subseteq \mathscr{P}(\omega)$ are separated if there are S_i such that $\mathscr{A}_i \leq S_i$ for every $i \leq n$ and $\bigcap_{i=1}^n S_i = \emptyset$.

Cardinal numbers a_n

For $n \ge 2$ we write a_n for the minimal size of an almost disjoint family \mathscr{A} that can be divided into disjoint parts $\mathscr{A}_1, \ldots, \mathscr{A}_n$ that are not separated.

Moreover, we write $\mathfrak{a}_{\omega} = \sup_{n} \mathfrak{a}_{n}$

Cardinal number \mathfrak{a}_{ω}

$$\mathfrak{a}_{\omega} = \sup_{n} \mathfrak{a}_{n}$$

・ロト・西ト・モン・モン・ ヨー うへで

Facts.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 ● ○○○

Facts.

• The Luzin family \mathscr{A} says that $\mathfrak{a}_2 = \omega_1$.

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

Facts.

- The Luzin family \mathscr{A} says that $\mathfrak{a}_2 = \omega_1$.
- $\omega_1 = \mathfrak{a}_2 \leq \mathfrak{a}_3 \leq \ldots \leq \mathfrak{a}_{\omega}$.

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

Facts.

- The Luzin family \mathscr{A} says that $\mathfrak{a}_2 = \omega_1$.
- $\omega_1 = \mathfrak{a}_2 \leq \mathfrak{a}_3 \leq \ldots \leq \mathfrak{a}_{\omega}$.

Facts.

- The Luzin family \mathscr{A} says that $\mathfrak{a}_2 = \omega_1$.
- $\omega_1 = \mathfrak{a}_2 \leq \mathfrak{a}_3 \leq \ldots \leq \mathfrak{a}_{\omega}$.

Avilés & Todorcevic (2011)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Facts.

- The Luzin family \mathscr{A} says that $\mathfrak{a}_2 = \omega_1$.
- $\omega_1 = \mathfrak{a}_2 \leq \mathfrak{a}_3 \leq \ldots \leq \mathfrak{a}_{\omega}$.

Avilés & Todorcevic (2011)

1 MA implies $a_3 = c$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Facts.

- The Luzin family \mathscr{A} says that $\mathfrak{a}_2 = \omega_1$.
- $\omega_1 = \mathfrak{a}_2 \leq \mathfrak{a}_3 \leq \ldots \leq \mathfrak{a}_{\omega}$.

Avilés & Todorcevic (2011)

- MA implies $a_3 = c$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Facts.

- The Luzin family \mathscr{A} says that $\mathfrak{a}_2 = \omega_1$.
- $\omega_1 = \mathfrak{a}_2 \leq \mathfrak{a}_3 \leq \ldots \leq \mathfrak{a}_{\omega}$.

Avilés & Todorcevic (2011)

- MA implies $a_3 = c$.

Facts.

- The Luzin family \mathscr{A} says that $\mathfrak{a}_2 = \omega_1$.
- $\omega_1 = \mathfrak{a}_2 \leq \mathfrak{a}_3 \leq \ldots \leq \mathfrak{a}_{\omega}$.

Avilés & Todorcevic (2011)

- **1** MA implies $a_3 = c$.

Theorem

 $\mathfrak{a}_{\omega} \leq \operatorname{non}(\mathscr{E})$, where \mathscr{E} is the σ -ideal of subsets of 2^{ω} that can be covered by countably many closed measure zero sets.

Facts.

- The Luzin family \mathscr{A} says that $\mathfrak{a}_2 = \omega_1$.
- $\omega_1 = \mathfrak{a}_2 \leq \mathfrak{a}_3 \leq \ldots \leq \mathfrak{a}_{\omega}$.

Avilés & Todorcevic (2011)

- MA implies $a_3 = c$.

Theorem

 $\mathfrak{a}_{\omega} \leq \operatorname{non}(\mathscr{E})$, where \mathscr{E} is the σ -ideal of subsets of 2^{ω} that can be covered by countably many closed measure zero sets.

Bartoszyński & Shelah: Consistently,

 $\operatorname{non}(\mathscr{E}) < \min(\operatorname{non}(\mathscr{N}), \operatorname{non}(\mathscr{M}))$

・ロト・西ト・モト・モー シック

Let
$$K = n^{\omega}$$
, $T = n^{<\omega}$.

Let $K = n^{\omega}$, $T = n^{<\omega}$. Take $X \subseteq K$ that cannot be covered by countably many closed measure zero sets in K.

Let $K = n^{\omega}$, $T = n^{<\omega}$. Take $X \subseteq K$ that cannot be covered by countably many closed measure zero sets in K. Define for $x \in K$

Let $K = n^{\omega}$, $T = n^{<\omega}$. Take $X \subseteq K$ that cannot be covered by countably many closed measure zero sets in K. Define for $x \in K$

$$B_i(x) = \{ \sigma \in T : \sigma \frown i \prec x \}$$

Let $K = n^{\omega}$, $T = n^{<\omega}$. Take $X \subseteq K$ that cannot be covered by countably many closed measure zero sets in K. Define for $x \in K$

$$B_i(x) = \{ \sigma \in T : \sigma \frown i \prec x \}$$

$$\mathscr{A}_i = \{B_i(x) : x \in X\}$$

Let $K = n^{\omega}$, $T = n^{<\omega}$. Take $X \subseteq K$ that cannot be covered by countably many closed measure zero sets in K. Define for $x \in K$

$$B_i(x) = \{ \sigma \in T : \sigma \frown i \prec x \}$$

$$\mathscr{A}_i = \{B_i(x) : x \in X\}$$

Then $\mathscr{A} = \mathscr{A}_0 \cup \ldots \cup \mathscr{A}_{n-1}$ is an almost disjoint family and \mathscr{A}_i are not separated.

Extension operators

Extension operators

Definition

<□> <□> <□> <□> <=> <=> <=> <=> <</p>

Given compact spaces $K \subseteq L$, a bounded linear operator $E: C(K) \rightarrow C(L)$ such that (Eg)|K = g for $g \in C(K)$ is called an extension operator.

Given compact spaces $K \subseteq L$, a bounded linear operator $E: C(K) \rightarrow C(L)$ such that (Eg)|K = g for $g \in C(K)$ is called an extension operator.

E is bounded if

$$||E|| = \sup\{||Eg|| : ||g|| \le 1\} < \infty.$$

Given compact spaces $K \subseteq L$, a bounded linear operator $E: C(K) \rightarrow C(L)$ such that (Eg)|K = g for $g \in C(K)$ is called an extension operator.

E is bounded if

$$||E|| = \sup\{||Eg|| : ||g|| \le 1\} < \infty.$$

Examples

Given compact spaces $K \subseteq L$, a bounded linear operator $E: C(K) \rightarrow C(L)$ such that (Eg)|K = g for $g \in C(K)$ is called an extension operator.

E is bounded if

$$||E|| = \sup\{||Eg|| : ||g|| \le 1\} < \infty.$$

Examples

 If K is metrizable then there is a norm-one extension operator for every compact L ⊇ K (Borsuk-Dugundji).

Given compact spaces $K \subseteq L$, a bounded linear operator $E: C(K) \rightarrow C(L)$ such that (Eg)|K = g for $g \in C(K)$ is called an extension operator.

E is bounded if

$$||E|| = \sup\{||Eg|| : ||g|| \le 1\} < \infty.$$

Examples

- If K is metrizable then there is a norm-one extension operator for every compact L ⊇ K (Borsuk-Dugundji).
- If K is not ccc and L⊇ K is separable then there is no extension operator (Pełczyński).

Countable discrete extensions

・ロト・西ト・モト・モー シック

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Definition

If K is compact then by a countable discrete extension of K we mean any **compact** space of the form $K \cup \omega$.

・ロト ・四ト ・ヨト ・ヨト - ヨ

If K is compact then by a countable discrete extension of K we mean any **compact** space of the form $K \cup \omega$.

Problem

Which compacts K admit a countable discrete extension $K \cup \omega$ with no extension operator $C(K) \rightarrow C(K \cup \omega)$?

If K is compact then by a countable discrete extension of K we mean any **compact** space of the form $K \cup \omega$.

Problem

Which compacts K admit a countable discrete extension $K \cup \omega$ with no extension operator $C(K) \rightarrow C(K \cup \omega)$?

Alexandrov-Urysohn spaces (aka Mrówka-Isbell)

Definition

If K is compact then by a countable discrete extension of K we mean any **compact** space of the form $K \cup \omega$.

Problem

Which compacts K admit a countable discrete extension $K \cup \omega$ with no extension operator $C(K) \rightarrow C(K \cup \omega)$?

Alexandrov-Urysohn spaces (aka Mrówka-Isbell)

$$\mathsf{AU}(\mathscr{A}) = \omega \cup \mathscr{A} \cup \{\infty\}$$

Definition

If K is compact then by a countable discrete extension of K we mean any **compact** space of the form $K \cup \omega$.

Problem

Which compacts K admit a countable discrete extension $K \cup \omega$ with no extension operator $C(K) \rightarrow C(K \cup \omega)$?

Alexandrov-Urysohn spaces (aka Mrówka-Isbell)

$$\mathsf{AU}(\mathscr{A}) = \omega \cup \mathscr{A} \cup \{\infty\}$$

For $A \in AU(\mathscr{A})$, sets $\{A\} \cup A \setminus F$, $F \in fin$ form a local base.

Definition

If K is compact then by a countable discrete extension of K we mean any **compact** space of the form $K \cup \omega$.

Problem

Which compacts K admit a countable discrete extension $K \cup \omega$ with no extension operator $C(K) \rightarrow C(K \cup \omega)$?

Alexandrov-Urysohn spaces (aka Mrówka-Isbell)

$$\mathsf{AU}(\mathscr{A}) = \omega \cup \mathscr{A} \cup \{\infty\}$$

For $A \in AU(\mathscr{A})$, sets $\{A\} \cup A \setminus F$, $F \in fin$ form a local base.

The main thing

▲□→ ▲圖→ ▲目→ ▲目→ 目 めんの

Let a compact space K contain a discrete set D with a single cluster point p. Suppose there are pairwise disjoint open sets U_i such that $|U_i \cap D| \ge a_n$ for every $i \le n$.

・ロト ・四ト ・ヨト ・ヨト - ヨ

Let a compact space K contain a discrete set D with a single cluster point p. Suppose there are pairwise disjoint open sets U_i such that $|U_i \cap D| \ge a_n$ for every $i \le n$. Then there is a countable discrete extension $K \cup \omega$ of K such that $||E|| \ge n$ for any extension operator $E : C(K) \to C(K \cup \omega)$.

・ロト ・四ト ・ヨト ・ヨト - ヨ

Let a compact space K contain a discrete set D with a single cluster point p. Suppose there are pairwise disjoint open sets U_i such that $|U_i \cap D| \ge a_n$ for every $i \le n$. Then there is a countable discrete extension $K \cup \omega$ of K such that $||E|| \ge n$ for any extension operator $E : C(K) \to C(K \cup \omega)$.

Corollary

If K satisifes the assumptions of Proposition for every n then K has a countable discrete extension without extension operators.

・ロト ・四ト ・ヨト ・ヨト - ヨ

Application

▲□→ ▲□→ ▲目→ ▲目→ 目 めんの

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

If a Banach space X contains c_0 and X/c_0 is separable then c_0 is complemented in X, i.e. $X = c_0 \oplus Y$ for some closed subspace Y of X.

イロト (部) (日) (日) (日) (日)

If a Banach space X contains c_0 and X/c_0 is separable then c_0 is complemented in X, i.e. $X = c_0 \oplus Y$ for some closed subspace Y of X.

Problem (Castillo, Kalton)

Suppose that X contains c_0 and X/c_0 is isomorphic to $C(2^{\kappa})$. Must c_0 be complemented in X?

If a Banach space X contains c_0 and X/c_0 is separable then c_0 is complemented in X, i.e. $X = c_0 \oplus Y$ for some closed subspace Y of X.

Problem (Castillo, Kalton)

Suppose that X contains c_0 and X/c_0 is isomorphic to $C(2^{\kappa})$. Must c_0 be complemented in X?

Answers

If a Banach space X contains c_0 and X/c_0 is separable then c_0 is complemented in X, i.e. $X = c_0 \oplus Y$ for some closed subspace Y of X.

Problem (Castillo, Kalton)

Suppose that X contains c_0 and X/c_0 is isomorphic to $C(2^{\kappa})$. Must c_0 be complemented in X?

Answers

Q Correa & Tausk: 'No' for $\kappa \geq \mathfrak{c}$.

If a Banach space X contains c_0 and X/c_0 is separable then c_0 is complemented in X, i.e. $X = c_0 \oplus Y$ for some closed subspace Y of X.

Problem (Castillo, Kalton)

Suppose that X contains c_0 and X/c_0 is isomorphic to $C(2^{\kappa})$. Must c_0 be complemented in X?

Answers

- **O Correa & Tausk:** 'No' for $\kappa \geq \mathfrak{c}$.
- **2** Marciszewski & GP: 'Yes' for $\kappa = \omega_1$ under MA(ω_1).

If a Banach space X contains c_0 and X/c_0 is separable then c_0 is complemented in X, i.e. $X = c_0 \oplus Y$ for some closed subspace Y of X.

Problem (Castillo, Kalton)

Suppose that X contains c_0 and X/c_0 is isomorphic to $C(2^{\kappa})$. Must c_0 be complemented in X?

Answers

- **O Correa & Tausk:** 'No' for $\kappa \geq \mathfrak{c}$.
- **2** Marciszewski & GP: 'Yes' for $\kappa = \omega_1$ under MA(ω_1).
- **(**) 'No' for $\kappa \geq \mathfrak{a}_{\omega}$.